Recurrence relations for radial wavefunctions for the N th-dimensional oscillators and hydrogenlike atoms

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys. A: Math. Gen. 362055
(http://iopscience.iop.org/0305-4470/36/8/304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.89
The article was downloaded on 02/06/2010 at 17:23

Please note that terms and conditions apply.

Recurrence relations for radial wavefunctions for the N th-dimensional oscillators and hydrogenlike atoms

J L Cardoso ${ }^{1}$ and R Álvarez-Nodarse ${ }^{2,3}$
${ }^{1}$ Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro, Apartado 202, 5001-911 Vila Real, Portugal
${ }^{2}$ Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada. E-18071 Granada, Spain
${ }^{3}$ Departamento de Análisis Matemático, Facultad de Matemática, Universidad de Sevilla. Apdo Postal 1160, Sevilla, E-41080, Sevilla, Spain
E-mail: jluis@utad.pt and ran@us.es

Received 5 September 2002, in final form 16 December 2002
Published 12 February 2003
Online at stacks.iop.org/JPhysA/36/2055

Abstract

We present a general procedure for finding recurrence relations of the radial wavefunctions for N th-dimensional isotropic harmonic oscillators and hydrogenlike atoms.

PACS numbers: 03.65.Ge, 31.15.+q

1. Introduction

There are many applications in modern physics that require knowledge of the wavefunctions of hydrogenlike atoms and isotropic harmonic oscillators, especially for finding the corresponding matrix elements (see, e.g., $[18,23]$ and references therein). There are several methods for generating such wavefunctions among which the so-called factorization method of Infeld and Hull [12] is of particular significance (for more recent papers see, e.g., [3, 13, 17, 24]). Moreover, the recurrence relations and the ladder-type operators for these wavefunctions are useful for finding the transition probabilities and evaluation of certain integrals [18, 23]. Methods for obtaining such recurrence relations have attracted the interest of several authors (see, e.g., $[6,21,22]$), and usually are based on the connection of such functions with the classical Laguerre polynomials. For generating further 'non-trivial' relations a Laplace-transform-based method has been developed recently $[6,25]$ but the calculation is cumbersome and requires inversion formulae.

Our main aim in this paper is to present an alternative approach for generating recurrence relations and ladder-type operators for the N th-dimensional isotropic harmonic oscillators and hydrogenlike atoms. The idea is to exploit the connection of the radial wavefunctions with the classical Laguerre polynomials and use a general theorem for the hypergeometric-type
functions [20] that will allow us to obtain several new relations for these polynomials and therefore, for the wavefunctions. Its advantage, compared to the other approaches, is not only that it can be easily extended to other exactly solvable models which involve hypergeometric functions or polynomials (see, e.g., [5]), but also because it is a constructive method: one chooses the values of the parameters and one gets the corresponding coefficients. The same method has been recently used $[7,9,10,27,28]$ to derive new recurrence relations for the hypergeometric polynomials and functions, i.e. the solutions of the second-order differential equation $\sigma(x) y^{\prime \prime}+\tau(x) y^{\prime}+\lambda y=0$, being σ and τ polynomials of degree, at most, 2 and 1 , respectively. We will only show here how this method works in some representative examples and refer to [7] for a more detailed list.

The structure of the paper is as follows: In section 2 the needed results and notation from the special function theory are introduced. In section 3 the isotropic oscillator is introduced and several recurrence and ladder-type relations are obtained. Similar results for the hydrogenlike atoms are presented in section 4. Finally, relevant references are quoted.

2. Preliminaries

In this paper we will deal with the hypergeometric functions y_{v}, which are the solution of the hypergeometric-type differential equation

$$
\begin{equation*}
\sigma(z) y^{\prime \prime}(z)+\tau(z) y^{\prime}(z)+\lambda y(z)=0 \tag{2.1}
\end{equation*}
$$

where σ and τ are polynomials with $\operatorname{deg} \sigma \leqslant 2, \operatorname{deg} \tau \leqslant 1$ and λ is a constant. The solutions of this equation are usually called functions of hypergeometric type and are denoted by $y_{v}(z)$ where v is such that $\lambda=-v \tau^{\prime}-v(v-1) \sigma^{\prime \prime} / 2$. The functions y_{v} have the form [20]

$$
\begin{equation*}
y(z)=y_{v}(z)=\frac{C_{v}}{\rho(z)} \int_{C} \frac{\sigma^{v}(s) \rho(s)}{(s-z)^{v+1}} \mathrm{~d} s \tag{2.2}
\end{equation*}
$$

where ρ is a solution of the Pearson equation $(\sigma \rho)^{\prime}=\tau \rho, \sigma$ and τ do not depend on ν, C is a contour in the complex plane such that its end points s_{1} and s_{2} satisfy the condition

$$
\begin{equation*}
\left.\frac{\sigma^{v+1}(s) \rho(s)}{(s-z)^{v+2}}\right|_{s_{1}} ^{s_{2}}=0 \tag{2.3}
\end{equation*}
$$

and C_{ν} is a normalizing factor.
For the hypergeometric functions y_{v} the following theorem holds [20, page 18]:
Theorem 2.1. Let $y_{v_{i}}^{\left(k_{i}\right)}(z), i=1,2,3$, be any three derivatives of order k_{i} of the functions of hypergeometric type, $v_{i}-v_{j}$ being an integer and such that

$$
\left.\frac{\sigma^{\nu_{0}+1}(s) \rho(s)}{(s-z)^{\mu_{0}}} s^{m}\right|_{s_{1}} ^{s_{2}}=0 \quad m=0,1,2, \ldots
$$

where ν_{0} denotes the index ν_{i} with minimal real part and μ_{0} that with maximal real part. Then, there exist three non-vanishing polynomials $B_{i}(z), i=1,2,3$, such that

$$
\begin{equation*}
\sum_{i=1}^{3} B_{i}(z) y_{v_{i}}^{\left(k_{i}\right)}(z)=0 \tag{2.4}
\end{equation*}
$$

A special case of these functions is the polynomials of hypergeometric type, i.e. the polynomial solutions of equation (2.1). They are defined by [20]

$$
p_{n}(z)=\frac{C_{n}}{\rho(z)} \oint \frac{\sigma^{n}(s) \rho(s)}{(s-z)^{n+1}} \mathrm{~d} s \quad n=0,1,2, \ldots
$$

i.e., the same function y_{v} of the expression (2.2) but the contour C is closed and v is a non-negative integer. Note that, in this case, the condition (2.3) is automatically fulfilled, so the theorem 2.1 holds for any family of polynomials of hypergeometric type. Note also that theorem 2.1 assures the existence of the non-vanishing polynomials in (2.4) but does not give any method for finding them. In general, it is not easy to find explicit expressions for these polynomials B_{i} but, in some cases [7,9-11, 27, 28], these coefficients are obtained explicitly in terms of the coefficients of the polynomials σ and τ in (2.1).

An example of such polynomials is the Laguerre polynomials L_{n}^{α} defined by the hypergeometric series
$L_{n}^{\alpha}(x)=\frac{(\alpha+1)_{n}}{n!}{ }_{1} F_{1}\left(\left.\begin{array}{c|c}-n & x \\ \alpha+1\end{array} \right\rvert\, x\right)=\frac{(\alpha+1)_{n}}{n!} \sum_{k=0}^{n} \frac{(-n)_{k}}{(\alpha+1)_{k}} \frac{x^{k}}{k!}$
$(a)_{0}:=1 \quad(a)_{k}:=a(a+1)(a+2) \cdots(a+k-1) \quad k=1,2,3, \ldots$.
These polynomials satisfy the following recurrence and differential-recurrence relations useful in the following sections (see, e.g., $[1,20,26]$)
$\frac{\mathrm{d}}{\mathrm{d} x} L_{n}^{\alpha}(x)=-L_{n-1}^{\alpha+1}(x)$
$x \frac{\mathrm{~d}}{\mathrm{~d} x} L_{n}^{\alpha}(x)=n L_{n}^{\alpha}(x)-(n+\alpha) L_{n-1}^{\alpha}(x)=(n+1) L_{n+1}^{\alpha}(x)-(n+\alpha+1-x) L_{n}^{\alpha}(x)$

Other instances of hypergeometric polynomials are the Jacobi, Bessel and Hermite polynomials [8, 20, 26].

3. The isotropic harmonic oscillator

The N-dimensional isotropic harmonic oscillator (IHO) is described by the Schrödinger equation

$$
\left(-\Delta+\frac{1}{2} \lambda^{2} r^{2}\right) \Psi=E \Psi \quad \Delta=\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}} \quad r=\sqrt{\sum_{k=1}^{n} x_{k}^{2}} .
$$

For solving it one uses the method of separation of variables that leads to a solution of the form $\Psi=R_{n l}^{(N)}(r) Y_{l m}\left(\Omega_{N}\right)$, where $R_{n l}^{(N)}(r)$ is the radial part, usually called the radial wavefunctions, defined by (see, e.g., $[4,6]$)

$$
\begin{equation*}
R_{n l}^{(N)}(r)=\mathcal{N}_{n l}^{(N)} r^{l} \mathrm{e}^{-\frac{1}{2} \lambda r^{2}} L_{n}^{l+\frac{N}{2}-1}\left(\lambda r^{2}\right) \quad \mathcal{N}_{n l}^{(N)}=\sqrt{\frac{2 n!\lambda^{l+\frac{N}{2}}}{\Gamma\left(n+l+\frac{N}{2}\right)}} \tag{3.1}
\end{equation*}
$$

$n=0,1,2, \ldots$ and $l=0,1,2, \ldots$ being the quantum numbers, and $N \geqslant 3$ the dimension of the space. The angular part $Y_{l m}\left(\Omega_{N}\right)$ is the so-called N th-spherical or hyperspherical harmonics $[4,19]$. In the following, we will assume that the parameters n, l, N are non-negative integers.

3.1. Recurrence relations connecting three different radial functions

We will look, now, for recurrence relations connecting three different radial functions.
Theorem 3.1. Let $R_{n l}^{(N)}(r), R_{n+n_{1}, l+l_{1}}^{(N)}(r)$ and $R_{n+n_{2}, l+l_{2}}^{(N)}(r)$ be three different radial functions of the Nth-dimensional isotropic harmonic oscillator, where n_{1}, n_{2} and l_{1}, l_{2} are integers such that $\min \left(n+n_{1}, n+n_{2}, l+l_{1}, l+l_{2}\right) \geqslant 0$. Then, there exist non-vanishing polynomials in r, A_{0}, A_{1}, and A_{2}, such that

$$
\begin{equation*}
A_{0} R_{n, l}^{(N)}(r)+A_{1} R_{n+n_{1}, l+l_{1}}^{(N)}(r)+A_{2} R_{n+n_{2}, l+l_{2}}^{(N)}(r)=0 . \tag{3.2}
\end{equation*}
$$

Proof. For the sake of simplicity we will prove the theorem for the case when l_{1}, l_{2} are nonnegative integers. The case when l_{1}, l_{2} are integers can be derived in the same way since the 'cases' $R_{n l}^{(N)}, R_{n+n_{1}, l \pm l_{1}}^{(N)}, R_{n+n_{2}, l \pm l_{2}}^{(N)}$ can be reduced to $R_{n l}^{(N)}, R_{n+n_{1}, l+l_{1}}^{(N)}, R_{n+n_{2}, l+l_{2}}^{(N)}$ by choosing $l=\min \left(l, l \pm l_{1}, l \pm l_{2}\right)$.

From (3.1) we have

$$
\begin{equation*}
L_{n}^{l+\frac{N}{2}-1}\left(\lambda r^{2}\right)=\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1} r^{-l} \mathrm{e}^{\frac{1}{2} \lambda r^{2}} R_{n l}^{(N)}(r) . \tag{3.3}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& L_{n+n_{1}}^{\left(l+l_{1}\right)+\frac{N}{2}-1}\left(\lambda r^{2}\right)=\left(\mathcal{N}_{n+n_{1}, l+l_{1}}^{(N)}\right)^{-1} r^{-\left(l+l_{1}\right)} \mathrm{e}^{\frac{1}{2} \lambda r^{2}} R_{n+n_{1}, l+l_{1}}^{(N)}(r) \tag{3.4}\\
& L_{n+n_{2}}^{\left(l+l_{2}\right)+\frac{N}{2}-1}\left(\lambda r^{2}\right)=\left(\mathcal{N}_{n+n_{2}, l+l_{2}}^{(N)}\right)^{-1} r^{-\left(l+l_{2}\right)} \mathrm{e}^{\frac{1}{2} \lambda r^{2}} R_{n+n_{2}, l+l_{2}}^{(N)}(r) . \tag{3.5}
\end{align*}
$$

Putting $s=\lambda r^{2}$, it is possible to rewrite the left-hand side of (3.4) and (3.5) in the form
$L_{n+n_{1}}^{\left(l+l_{1}\right)+\frac{N}{2}-1}(s)=(-1)^{l_{1}} \frac{\mathrm{~d}^{l_{1}}}{\mathrm{~d} s^{l_{1}}} L_{n+n_{1}+l_{1}}^{l+\frac{N}{2}-1}(s) \quad L_{n+n_{2}}^{\left(l+l_{2}\right)+\frac{N}{2}-1}(s)=(-1)^{l_{2}} \frac{\mathrm{~d}^{l_{2}}}{\mathrm{~d} s^{l_{2}}} L_{n+n_{2}+l_{2}}^{l+\frac{N}{2}-1}(s)$
respectively. On the other hand, by the generalized three-term recurrence relation (2.4), there exist non-vanishing polynomials $B_{i}(s), i=0,1,2$, such that

$$
B_{0} L_{n}^{l+\frac{N}{2}-1}(s)+B_{1} \frac{\mathrm{~d}^{l_{2}}}{\mathrm{~d} s^{l_{2}}} L_{n+n_{1}+l_{1}}^{l+\frac{N}{2}-1}(s)+B_{2} \frac{\mathrm{~d}^{l_{1}}}{\mathrm{~d} s^{l_{1}}} L_{n+n_{2}+l_{2}}^{l+\frac{N}{2}-1}(s)=0 .
$$

Thus, since (3.6),

$$
\begin{equation*}
C_{0} L_{n}^{l+\frac{N}{2}-1}(s)+C_{1} L_{n+n_{1}}^{\left(l+l_{1}\right)+\frac{N}{2}-1}(s)+C_{2} L_{n+n_{2}}^{\left(l+l_{2}\right)+\frac{N}{2}-1}(s)=0 \tag{3.7}
\end{equation*}
$$

where $C_{0}=B_{0}, C_{1}=(-1)^{l_{1}} B_{1}$ and $C_{2}=(-1)^{l_{2}} B_{2}$. If we substitute (3.3)-(3.5) in (3.7), we have

$$
\begin{gather*}
\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1} C_{0} R_{n l}^{(N)}(r)+\left(\mathcal{N}_{n+n_{1}, l+l_{1}}^{(N)}\right)^{-1} C_{1} r^{-l_{1}} R_{n+n_{1}, l+l_{1}}^{(N)}(r) \\
+\left(\mathcal{N}_{n+n_{2}, l+l_{2}}^{(N)}\right)^{-1} C_{2} r^{-l_{2}} R_{n+n_{2}, l+l_{2}}^{(N)}(r)=0 \tag{3.8}
\end{gather*}
$$

which transforms into (3.2) where $A_{0}=\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1} C_{0} r^{l_{1}+l_{2}}, A_{1}=\left(\mathcal{N}_{n+n_{1}, l+l_{1}}^{(N)}\right)^{-1} C_{1} r^{l_{2}}$ and $A_{2}=\left(\mathcal{N}_{n+n_{2}, l+l_{2}}^{(N)}\right)^{-1} C_{2} r^{l_{1}}$. Obviously these functions $A_{i}, i=0,1,2$, are polynomials in r.

Using this technique, it is very simple to obtain concrete relations between three different radial functions of the IHO. Here we will present five of them. As we already pointed out, it is not easy to obtain the coefficients C_{i} in (3.7), nevertheless, combining in a certain way the properties (2.6)-(2.11) they can be easily identified. In the following examples we can show how the coefficients C_{i} can be 'guessed'. The idea is as follows: one should first decide the
relation to be obtained by defining the values n_{1}, n_{2}, l_{1} and l_{2} in (3.7), and then, combining in a certain way equations (2.6)-(2.11), transform (3.7) into one of the formulae (2.6)-(2.11) or in a sum of linearly independent Laguerre polynomials from where the unknown coefficients easily follow. Let us show how this works.

- Substituting $n_{1}=-1, n_{2}=1, l_{1}=l_{2}=0$ and $\alpha=l+\frac{N}{2}-1$ in (3.7) it becomes

$$
C_{0} L_{n}^{\alpha}(s)+C_{1} L_{n-1}^{\alpha}(s)+C_{2} L_{n+1}^{\alpha}(s)=0
$$

Comparing the above expression with the relation (2.11) we see that the coefficients $C_{i}, i=1,2,3$ are given by $C_{0}=s-(2 n+\alpha+1), C_{1}=n+\alpha$ and $C_{2}=n+1$. Substituting these values in (3.8) we find the following recurrence relation

$$
\begin{gathered}
\sqrt{n\left(n+l+\frac{N}{2}-1\right)} R_{n-1, l}^{(N)}(r)+\left[\lambda r^{2}-\left(2 n+l+\frac{N}{2}\right)\right] R_{n, l}^{(N)}(r) \\
+\sqrt{(n+1)\left(n+l+\frac{N}{2}\right)} R_{n+1, l}^{(N)}(r)=0
\end{gathered}
$$

This relation generalizes the recurrence relation obtained in [13] for the Laguerre functions.

The next four formulae can be obtained in an analogous way. We will only indicate here the values of the integers n_{1}, n_{2}, l_{1} and l_{2}, respectively.

- $n_{1}=n_{2}=0, l_{1}=-1, l_{2}=1$:

$$
\begin{gathered}
r \sqrt{\lambda\left(n+l+\frac{N}{2}-1\right)} R_{n, l-1}^{(N)}(r)-\left(l+\frac{N}{2}-1+\lambda r^{2}\right) R_{n, l}^{(N)}(r) \\
+r \sqrt{\lambda\left(n+l+\frac{N}{2}\right)} R_{n, l+1}^{(N)}(r)=0 .
\end{gathered}
$$

- $n_{1}=0, n_{2}=1, l_{1}=-1, l_{2}=0$:

$$
\begin{array}{r}
\sqrt{\lambda\left(n+l+\frac{N}{2}-1\right)} R_{n, l-1}^{(N)}(r)+\left(n+1-\lambda r^{2}\right) R_{n, l}^{(N)}(r) \\
-\sqrt{(n+1)\left(n+l+\frac{N}{2}\right)} R_{n+1, l}^{(N)}(r)=0
\end{array}
$$

- $n_{1}=-1, n_{2}=0, l_{1}=0, l_{2}=1$:

$$
-\sqrt{n\left(n+l+\frac{N}{2}-1\right)} R_{n-1, l}^{(N)}(r)+\left(n-\lambda r^{2}\right) R_{n, l}^{(N)}(r)+r \sqrt{\lambda\left(n+l+\frac{N}{2}\right)} R_{n, l+1}^{(N)}(r)=0 .
$$

- $n_{1}=0, n_{2}=1, l_{1}=-1, l_{2}=0$:

$$
\begin{gathered}
r \sqrt{\lambda\left(n+l+\frac{N}{2}-1\right)} R_{n, l-1}^{(N)}(r)+\left(n+1-\lambda r^{2}\right) R_{n, l}^{(N)}(r) \\
-\sqrt{(n+1)\left(n+l+\frac{N}{2}\right)} R_{n+1, l}^{(N)}(r)=0
\end{gathered}
$$

Obviously, similar recurrence relations for the radial functions $R_{n, l}^{(N)}(r)$ can be found using the same procedure, i.e. choosing different values for the parameters n_{1}, n_{2}, l_{1} and l_{2}.

3.2. Ladder-type relations for the IHO radial functions

Next we will establish a linear relation involving two radial functions of the IHO and the derivative of one of them. Some of these relations will define the so-called ladder operators for the radial wavefunctions and have important applications in the so-called factorization method (see, e.g., [3, 12, 13, 18, 24]).
Theorem 3.2. Let $R_{n, l}^{(N)}(r)$ and $R_{n+n_{1}, l+l_{1}}^{(N)}(r)$ be two radial functions of the Nth-dimensional isotropic harmonic oscillator and let $\min \left(n+n_{1}, l+l_{1}\right) \geqslant 0$ and $\left(n_{1}\right)^{2}+\left(l_{1}\right)^{2} \neq 0$, where n_{1} and l_{1} are integers. Then, there exist non-vanishing polynomials in r, A_{0}, A_{1}, and A_{2}, such that

$$
\begin{equation*}
A_{0} R_{n, l}^{(N)}(r)+A_{1} \frac{\mathrm{~d}}{\mathrm{~d} r} R_{n, l}^{(N)}(r)+A_{2} R_{n+n_{1}, l+l_{1}}^{(N)}(r)=0 \tag{3.9}
\end{equation*}
$$

Proof. Again we will give the proof for the case when l_{1} is a non-negative integer. The case when l_{1} is an integer can be derived in the same way by choosing $l=\min \left(l, l \pm l_{1}\right)$. We start by taking the derivative of (3.3)

$$
\begin{gather*}
\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1}\left[\frac{\mathrm{~d}\left(r^{-l} \mathrm{e}^{\frac{1}{2} \lambda r^{2}}\right)}{\mathrm{d} r} R_{n l}^{(N)}(r)+r^{-l} \mathrm{e}^{\frac{1}{2} \lambda r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r} R_{n l}^{(N)}(r)\right]=\frac{\mathrm{d}}{\mathrm{~d} r} L_{n}^{l+\frac{N}{2}-1}\left(\lambda r^{2}\right) \\
=2 \lambda r \frac{\mathrm{~d}}{\mathrm{~d} s} L_{n}^{l+\frac{N}{2}-1}(s) \tag{3.10}
\end{gather*}
$$

where $s=\lambda r^{2}$. Using the last expression and the identities
$L_{n-1}^{l+\frac{N}{2}}(s)=-\left(L_{n}^{l+\frac{N}{2}-1}(s)\right)^{\prime} \quad$ and $\quad L_{n+n_{1}}^{\left(l+l_{1}\right)+\frac{N}{2}-1}(s)=(-1)^{l_{1}} \frac{\mathrm{~d}^{l_{1}}}{\mathrm{~d} s^{l_{1}}} L_{n+n_{1}+l_{1}}^{l+\frac{N}{2}-1}(s)$
as well as theorem 2.1 we can guarantee that there exists a recurrence relation with nonvanishing polynomial coefficients B_{0}, B_{1} and B_{2}

$$
\begin{equation*}
B_{0} L_{n}^{l+\frac{N}{2}-1}(s)+B_{1} L_{n-1}^{l+\frac{N}{2}}(s)+B_{2} L_{n+n_{1}}^{\left(l+l_{1}\right)+\frac{N}{2}-1}(s)=0 \tag{3.11}
\end{equation*}
$$

Hence, from (3.10), (3.11) and (3.3)

$$
\begin{equation*}
\left[B_{1} \frac{\mathrm{~d}}{\mathrm{~d} r}+\lambda r\left(B_{1}-2 B_{0}\right)-B_{1} \frac{l}{r}\right] R_{n l}^{(N)}(r)=2 \lambda B_{2} \frac{\mathcal{N}_{n, l}^{(N)}}{\mathcal{N}_{n+n_{1}, l+l_{1}}^{(N)}} r^{1-l_{1}} R_{n+n_{1}, l+l_{1}}^{(N)}(r) \tag{3.12}
\end{equation*}
$$

which completes the proof.
Let us now show how one can obtain ladder-type relations for the radial wavefunction $R_{n, l}^{(N)}(r)$ of the IHO. Again the theorem does not give any method for getting ladder-type operators but we can proceed as follows: first, to decide the relation that one wants to obtain by defining the values n_{1} and l_{1} and substitute them in (3.11). Then, combining in a certain way equations (2.6)-(2.11) transform (3.11) into one of the formulae (2.6)-(2.11) or in a sum of linearly independent Laguerre polynomials and solve the resulting equations for the unknown coefficients. Let us consider some examples.

- Choosing $n_{1}=-1$ and $l_{1}=1$, (3.11) becomes

$$
B_{0} L_{n}^{\alpha}(s)+B_{1} L_{n-1}^{\alpha+1}(s)+B_{2} L_{n-1}^{(\alpha+1)}(s)=0
$$

So, using the expression (2.6)

$$
B_{0} L_{n}^{\alpha}(s)-\left(B_{1}+B_{2}\right)\left(L_{n}^{\alpha}\right)^{\prime}(s)=0
$$

Since $L_{n}^{\alpha}(s)$ and $\left(L_{n}^{\alpha}\right)^{\prime}(s)$ are linearly independent, $B_{0}=0$ and $B_{1}=-B_{2}$. Then equation (3.12), with the choice $B_{2}=1$, gives

$$
\left[\frac{\mathrm{d}}{\mathrm{~d} r}+\lambda r-\frac{l}{r}\right] R_{n, l}^{(N)}(r)=-2 \frac{\mathcal{N}_{n, l}^{(N)}}{\mathcal{N}_{n-1, l+1}^{(N)}} R_{n-1, l+1}^{(N)}(r)
$$

from where we find

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} r}+\lambda r-\frac{l}{r}\right] R_{n, l}^{(N)}(r)=-2 \sqrt{\lambda n} R_{n-1, l+1}^{(N)}(r) . \tag{3.13}
\end{equation*}
$$

In the same way we have the following results:

- $n_{1}=1, l_{1}=-1$:

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} r}-\lambda r+\frac{l+N-2}{r}\right] R_{n, l}^{(N)}(r)=2 \sqrt{\lambda(n+1)} R_{n+1, l-1}^{(N)}(r) . \tag{3.14}
\end{equation*}
$$

- $n_{1}=1, l_{1}=1$:

$$
\begin{align*}
& {\left[\left(\lambda r^{2}-(n+1)\right)\left(\frac{\mathrm{d}}{\mathrm{~d} r}-\frac{l}{r}-\lambda r\right)+2 \lambda\left(n+l+\frac{N}{2}\right) r\right] R_{n, l}^{(N)}(r)} \\
& \quad=2 \sqrt{\lambda(n+1)\left(n+l+\frac{N}{2}\right)\left(n+l+\frac{N}{2}+1\right)} R_{n+1, l+1}^{(N)}(r) \tag{3.15}
\end{align*}
$$

- $n_{1}=-1, l_{1}=-1$:

$$
\begin{array}{r}
{\left[\left(\lambda r^{2}-n\right)\left(\frac{\mathrm{d}}{\mathrm{~d} r}-\frac{l}{r}+\lambda r\right)-2 n\left(\lambda r+\frac{l+\frac{N}{2}-1}{r}\right)\right] R_{n, l}^{(N)}(r)} \\
\quad=-2 \sqrt{\lambda n\left(n+l+\frac{N}{2}-1\right)\left(n+l+\frac{N}{2}-2\right)} R_{n-1, l-1}^{(N)}(r) \tag{3.16}
\end{array}
$$

- $n_{1}=0, l_{1}=-1$:

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} r}+\lambda r+\frac{l+N-2}{r}\right] R_{n, l}^{(N)}(r)=2 \sqrt{\lambda\left(n+l+\frac{N}{2}-1\right)} R_{n, l-1}^{(N)}(r) . \tag{3.17}
\end{equation*}
$$

- $n_{1}=0, l_{1}=1$:

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} r}-\lambda r-\frac{l}{r}\right] R_{n, l}^{(N)}(r)=-2 \sqrt{\lambda\left(n+l+\frac{N}{2}\right)} R_{n, l+1}^{(N)}(r) \tag{3.18}
\end{equation*}
$$

- $n_{1}=1, l_{1}=0$:

$$
\begin{equation*}
\left[r\left(\frac{\mathrm{~d}}{\mathrm{~d} r}-\lambda r\right)+(2 n+l+N)\right] R_{n, l}^{(N)}(r)=2 \sqrt{(n+1)\left(n+l+\frac{N}{2}\right)} R_{n+1, l}^{(N)}(r) \tag{3.19}
\end{equation*}
$$

- $n_{1}=-1, l_{1}=0$:

$$
\begin{equation*}
\left[r\left(\frac{\mathrm{~d}}{\mathrm{~d} r}+\lambda r\right)-(2 n+l)\right] R_{n, l}^{(N)}(r)=-2 \sqrt{n\left(n+l+\frac{N}{2}-1\right)} R_{n-1, l}^{(N)}(r) \tag{3.20}
\end{equation*}
$$

The formulae (3.13), (3.14), (3.17) and (3.15) correspond (up to minor misprints) to the formulae (16c), (16a), (16b) and (16d) of [6, p 4765], respectively, and generalize the ones obtained in [13].

4. Radial functions for the hydrogen atom

In this section we will provide a similar study for the N-dimensional hydrogen atom described by the Schrödinger equation

$$
\left(-\Delta-\frac{1}{r}\right) \Psi=E \Psi \quad \Delta=\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}} \quad r=\sqrt{\sum_{k=1}^{n} x_{k}^{2}} .
$$

The solution is given by $\Psi=R_{n l}^{(N)}(r) Y_{l m}\left(\Omega_{N}\right)$, where the radial part $R_{n l}^{(N)}(r)$ is defined by [2, 14]
$R_{n l}^{(N)}(r)=\mathcal{N}_{n, l}^{(N)}\left(\frac{r}{n+\frac{N}{2}-\frac{3}{2}}\right)^{l} \exp \left(-\frac{r}{2\left(n+\frac{N}{2}-\frac{3}{2}\right)}\right) L_{n-l-1}^{2 l+N-2}\left(\frac{r}{n+\frac{N}{2}-\frac{3}{2}}\right)$.
Here $n=l+1, l+2, \ldots$ and $l=0,1,2, \ldots$ are the quantum numbers, $N \geqslant 3$ is the dimension of the space, and the normalizing constant $\mathcal{N}_{n, l}^{(N)}$ is

$$
\begin{equation*}
\mathcal{N}_{n, l}^{(N)}=\sqrt{\frac{(n-l-1)!}{(n+l+N-3)!}} \frac{2}{\left(n+\frac{N-3}{2}\right)^{2}} \tag{4.2}
\end{equation*}
$$

As before, $Y_{l m}\left(\Omega_{N}\right)$ denotes the hyperspherical harmonics.
Here it is important to note that the Laguerre polynomials that appear in the expression of the radial functions are not the classical ones $L_{n}^{\alpha}(x)$ in the sense that the parameter α as well as the variable x depend on the degree of the polynomials, n. Nevertheless, the algebraic properties of the classical Laguerre polynomials (2.6)-(2.11) can be used for deriving the algebraic relations of the radial wavefunctions as we will show in this section. When the parameters of the classical polynomials depend on n, the polynomials are orthogonal with respect to a variant weights [15, 16, 29]. Using the theory of these variant classical polynomials the same recurrence relations can be derived as is shown in [29]. For more details on these varying classical polynomials we refer the reader to the aforementioned works [15, 16, 29].

4.1. Recurrence relations and ladder-type operators for the radial functions

We start by proving the following general theorem:
Theorem 4.1. Let the functions $R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right], R_{n+n_{1}, l+l_{1}}^{(N)}\left[\left(n+n_{1}+\frac{N-3}{2}\right) r\right]$ and $R_{n+n_{2}, l+l_{2}}^{(N)}\left[\left(n+n_{2}+\frac{N-3}{2}\right) r\right]$ be three different radial functions of the Nth hydrogen atom and n_{1}, n_{2} and l_{1}, l_{2} integers such that $\min \left(n+n_{1}, n+n_{2}, l+l_{1}, l+l_{2}\right) \geqslant 0$. Then, there exist non-vanishing polynomials in r, A_{0}, A_{1}, and A_{2}, such that

$$
\begin{gathered}
A_{0} R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right]+A_{1} R_{n+n_{1}, l+l_{1}}^{(N)}\left[\left(n+n_{1}+\frac{N-3}{2}\right) r\right] \\
+A_{2} R_{n+n_{2}, l+l_{2}}^{(N)}\left[\left(n+n_{2}+\frac{N-3}{2}\right) r\right]=0 .
\end{gathered}
$$

Proof. As in theorem 2.1 we will prove only the case when l_{1}, l_{2} are non-negative integers since the $R_{n l}^{(N)}, R_{n+n_{1}, l \pm l_{1}}^{(N)}, R_{n+n_{2}, l \pm l_{2}}^{(N)}$ can be reduced to $R_{n l}^{(N)}, R_{n+n_{1}, l+l_{1}}^{(N)}, R_{n+n_{2}, l+l_{2}}^{(N)}$ by choosing $l=\min \left(l, l \pm l_{1}, l \pm l_{2}\right)$.

We start from equation (4.1)

$$
L_{n-l-1}^{2 l+N-2}\left(\frac{x}{n+\frac{N-3}{2}}\right)=\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1}\left(\frac{x}{n+\frac{N-3}{2}}\right)^{-l} \exp \left(\frac{x}{2\left(n+\frac{N-3}{2}\right)}\right) R_{n l}^{(N)}(x)
$$

or equivalently, taking $x /\left(n+\frac{N-3}{2}\right)=r, \alpha=2 l+N-2$, and $m=n-l-1$

$$
\begin{equation*}
L_{m}^{\alpha}(r)=\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1} r^{-l} \mathrm{e}^{r / 2} R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right] . \tag{4.3}
\end{equation*}
$$

In a similar way
$L_{m+n_{1}-l_{1}}^{\alpha+2 l_{1}}(r)=\left(\mathcal{N}_{n+n_{1}, l+l_{1}}^{(N)}\right)^{-1} r^{-\left(l+l_{1}\right)} \mathrm{e}^{r / 2} R_{n+n_{1}, l+l_{1}}^{(N)}\left[\left(n+n_{1}+\frac{N-3}{2}\right) r\right]$
$L_{m+n_{2}-l_{2}}^{\alpha+2 l_{2}}(r)=\left(\mathcal{N}_{n+n_{2}, l+l_{2}}^{(N)}\right)^{-1} r^{-\left(l+l_{2}\right)} \mathrm{e}^{r / 2} R_{n+n_{2}, l+l_{2}}^{(N)}\left[\left(n+n_{2}+\frac{N-3}{2}\right) r\right]$.
On the other hand
$L_{m+n_{1}-l_{1}}^{\alpha+2 l_{1}}(r)=\frac{\mathrm{d}^{2 l_{1}}}{\mathrm{~d} r^{2 l_{1}}} L_{m+n_{1}+l_{1}}^{\alpha}(r) \quad$ and $\quad L_{m+n_{2}-l_{2}}^{\alpha+2 l_{2}}(r)=\frac{\mathrm{d}^{2 l_{2}}}{\mathrm{~d} r^{2 l_{2}}} L_{m+n_{2}+l_{2}}^{\alpha}(r)$.
Now, using theorem 2.1 we can assure that there exist non-vanishing polynomials in r, A_{0}^{*}, A_{1}^{*}, and A_{2}^{*}, such that

$$
A_{0}^{*} L_{m}^{\alpha}(r)+A_{1}^{*} \frac{\mathrm{~d}^{2 l_{1}}}{\mathrm{~d} r^{2 l_{1}}} L_{m+n_{1}+l_{1}}^{\alpha}(r)+A_{2}^{*} \frac{\mathrm{~d}^{2 l_{2}}}{\mathrm{~d} r^{2 l_{2}}} L_{m+n_{2}+l_{2}}^{\alpha}(r)=0
$$

that is,

$$
\begin{equation*}
A_{0}^{*} L_{m}^{\alpha}(r)+A_{1}^{*} L_{m+n_{1}-l_{1}}^{\alpha+2 l_{1}}(r)+A_{2}^{*} L_{m+n_{2}-l_{2}}^{\alpha+2 l_{2}}(r)=0 . \tag{4.6}
\end{equation*}
$$

Replacing the expressions $L_{m}^{\alpha}(r), L_{m+n_{1}-l_{1}}^{\alpha+2 l_{1}}(r)$ and $L_{m+n_{2}-l_{2}}^{\alpha+2 l_{2}}(r)$ by the right-hand sides of (4.3)-(4.5), respectively, in (4.6), we have

$$
\begin{align*}
& A_{0}^{*}\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1} R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right] \\
&+A_{1}^{*}\left(\mathcal{N}_{n+n_{1}, l+l_{1}}^{(N)}\right)^{-1} r^{-l_{1}} R_{n+n_{1}, l+l_{1}}^{(N)}\left[\left(n+n_{1}+\frac{N-3}{2}\right) r\right] \\
&+A_{2}^{*}\left(\mathcal{N}_{n+n_{2}, l+l_{2}}^{(N)}\right)^{-1} r^{-l_{2}} R_{n+n_{2}, l+l_{2}}^{(N)}\left[\left(n+n_{2}+\frac{N-3}{2}\right) r\right]=0 \tag{4.7}
\end{align*}
$$

that proves the theorem with

$$
A_{0}=A_{0}^{*}\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1} r^{l_{1}+l_{2}} \quad A_{1}=A_{1}^{*}\left(\mathcal{N}_{n+n_{1}, l+l_{1}}^{(N)}\right)^{-1} r^{l_{2}} \quad A_{2}=A_{2}^{*}\left(\mathcal{N}_{n+n_{2}, l+l_{2}}^{(N)}\right)^{-1} r^{l_{1}} .
$$

Just as in the IHO case from a long list of interesting cases, we will list some examples of application of the last theorem.

- Putting $n_{1}=1, n_{2}=-1, l_{1}=l_{2}=0$ in (4.6), identifying the corresponding coefficients using the relation (2.11) of the Laguerre polynomials, and then using the relation (4.1) we find the expression

$$
\begin{align*}
& A_{0} R_{n-1, l}^{(N)}\left[\left(n+\frac{N}{2}-\frac{5}{2}\right) r\right]+A_{1} R_{n, l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right] \\
& \quad+A_{2} R_{n+1, l}^{(N)}\left[\left(n+\frac{N}{2}-\frac{1}{2}\right) r\right]=0 \\
& A_{0}=\sqrt{(n-l-1)(n+l+N-3)}\left(\frac{n+(N-5) / 2}{n+(N-3) / 2}\right)^{2} \quad A_{1}=-(2 n+N-3-r) \tag{4.8}\\
& A_{2}=\sqrt{(n-l)(n+l+N-2)}\left(\frac{n+(N-1) / 2}{n+(N-3) / 2}\right)^{2} .
\end{align*}
$$

- For $n_{1}=n_{2}=0$ and $l_{1}=-1, l_{2}=1$ we have

$$
\begin{align*}
& A_{0} R_{n, l-1}^{(N)}(r)+A_{1} R_{n, l}^{(N)}(r)+A_{2} R_{n, l+1}^{(N)}(r)=0 \\
& A_{0}=(2 l+N-1) \sqrt{(n-l)(n+l+N-3)} r \\
& A_{2}=(2 l+N-3) \sqrt{(n-l-1)(n+l+N-2)} r \tag{4.9}\\
& A_{1}=(2 l+N-2)\left[(2 n+N-3) r-(2 l+N-3)(2 l+N-1)\left(n+\frac{N-3}{2}\right)\right] .
\end{align*}
$$

- $n_{1}=0, n_{2}=1, l_{1}=-1$ and $l_{2}=0$. In this case we obtain

$$
\begin{gather*}
\begin{array}{l}
A_{0} R_{n, l-1}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right]+A_{1} R_{n, l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right] \\
+A_{2} R_{n+1, l}^{(N)}\left[\left(n+\frac{N}{2}-\frac{1}{2}\right) r\right]=0 \\
A_{0}=r \sqrt{n+l+N-3} \quad A_{1}=\sqrt{n-l}[(2 l+N-3)+r] \\
A_{2}=-(2 l+N-3) \sqrt{n+l+N-2}\left(\frac{n+(N-1) / 2}{n+(N-3) / 2}\right)^{2}
\end{array} .
\end{gather*}
$$

Other cases can be obtained in the same way.
Now we will state for the N th hydrogen atom the so-called ladder-type operators.
Theorem 4.2. Let $R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right]$ and $R_{n+n_{1}, l+l_{1}}^{(N)}\left[\left(n+n_{1}+\frac{N-3}{2}\right) r\right]$ be two different radial functions of the Nth hydrogen atom and $\frac{\mathrm{d}}{\mathrm{d} r} R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right]$ the first derivative with respect to r, where n_{1} and l_{1} are integers such that $\min \left(n+n_{1}, l+l_{1}\right) \geqslant 0,\left(n_{1}\right)^{2}+\left(l_{1}\right)^{2} \neq 0$. Then, there exist non-vanishing polynomials in r, A_{0}, A_{1} and A_{2}, such that

$$
\begin{gather*}
A_{0} R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right]+A_{1} \frac{\mathrm{~d}}{\mathrm{~d} r} R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right] \\
+A_{2} R_{n+n_{1}, l+l_{1}}^{(N)}\left[\left(n+n_{1}+\frac{N-3}{2}\right) r\right]=0 . \tag{4.11}
\end{gather*}
$$

Proof. The proof is similar to that of theorem 3.2 so we will present here only a sketch of it. In fact, using (4.1), we have

$$
\begin{aligned}
L_{m}^{\alpha}(z)=\left(\mathcal{N}_{n, l}^{(N)}\right)^{-1} z^{-l} \mathrm{e}^{\frac{z}{2}} R_{n l}^{(N)} & {\left[\left(n+\frac{N-3}{2}\right) z\right] } \\
\text { where } & z=\frac{r}{n+\frac{N-3}{2}} \quad \alpha=2 l+N-2 \quad m=n-l-1 .
\end{aligned}
$$

Taking the derivative of the above formula with respect to z, using the identity (2.6) for the Laguerre polynomials and the theorem 2.1 we can guarantee the existence of non-vanishing polynomials B_{0}, B_{1}, and B_{2} such that

$$
\begin{equation*}
B_{0} L_{m}^{\alpha}(z)+B_{1} L_{m-1}^{\alpha+1}(z)+B_{2} L_{m+n_{1}-l_{1}}^{\alpha+2 l_{1}}(z)=0 . \tag{4.12}
\end{equation*}
$$

Now, using relation (4.1), we obtain

$$
\begin{array}{r}
\left.r^{l_{1}\left(B_{1} \frac{\mathrm{~d}}{\mathrm{~d} r}-\right.}-B_{1} \frac{l}{r}+\frac{1}{2} B_{1}-B_{0}\right) R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right] \\
=B_{2} \frac{\mathcal{N}_{n, l}^{(N)}}{\mathcal{N}_{n+n_{1}, l+l_{1}}^{(N)}} R_{n l}^{(N)}\left[\left(n+n_{1}+\frac{N-3}{2}\right) r\right] \tag{4.13}
\end{array}
$$

from where the results immediately follow.

Again, from the above theorem it is easy to obtain several relations for the radial wavefunctions of the N th hydrogen atom and, in particular, the ladder operators in n and l, respectively.

- $n_{1}=0, l_{1}=1$: we start by substituting $n_{1}=0$ and $l_{1}=1$ in (4.12)
$B_{0} L_{m}^{\alpha}(z)+B_{1} L_{m-1}^{\alpha+1}(z)+B_{2} L_{m-1}^{\alpha+2}(z)=0 \quad$ where $\quad m=n-l-1, \alpha=2 l+N-2$.
Next, we use (2.8) and (2.6), respectively, to 'eliminate' $L_{m}^{\alpha}(z)$ and $L_{m-1}^{\alpha+2}(z)$. This yields,

$$
B_{0} L_{m}^{\alpha+1}(z)+\left(B_{1}-B_{0}\right) L_{m-1}^{\alpha+1}(z)-B_{2} \frac{\mathrm{~d}}{\mathrm{~d} z} L_{m}^{\alpha+1}(z)=0 .
$$

Then, comparing the resulting equation with expression (2.7), we find $B_{0}=m, B_{2}=r$, $B_{1}-B_{0}=-(m+\alpha+1)$, i.e. $B_{0}=n-l-1, B_{1}=-(2 l+N-1)$, and $B_{2}=r$, then (4.13), after the change $\left(n+\frac{N-3}{2}\right) r \rightarrow r$, leads to the following ladder-type relation

$$
\begin{equation*}
\left[\left(l+\frac{N-1}{2}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} r}-\frac{l}{r}\right)+\frac{1}{2}\right] R_{n l}^{(N)}(r)=-\frac{1}{2} \sqrt{1-\left(\frac{l+(N-1) / 2}{n+(N-3) / 2}\right)^{2}} R_{n, l+1}^{(N)}(r) . \tag{4.14}
\end{equation*}
$$

- $n_{1}=0, l_{1}=-1$: substituting these values in (4.12) we obtain
$B_{0} L_{m}^{\alpha}(z)+B_{1} L_{m-1}^{\alpha+1}(z)+B_{2} L_{m+1}^{\alpha-2}(z)=0 \quad$ where $\quad m=n-l-1, \alpha=2 l+N-2$.
Next, we use (2.8) and (2.10) twice, which leads to
$B_{2} L_{m+1}^{\alpha}(z)+\left(B_{0}-B_{1} \frac{m}{z}-2 B_{2}\right) L_{m}^{\alpha}(z)-\left(B_{1} \frac{m+\alpha}{z}+B_{2}\right) L_{m-1}^{\alpha}(z)=0$.
Comparing this expression with (2.11) we find $B_{2}=m+1, B_{0}-B_{1} m / z-2 B_{2}=-2 m-$ $\alpha-1+z$ and $B_{1}(m+\alpha) / z+B_{2}=m+\alpha$, i.e. $B_{0}=[(m+\alpha) z-\alpha(\alpha-1)] /(m+\alpha), B_{1}=$ $(\alpha-1) z /(m+\alpha)$. Substituting the functions B_{0}, B_{1}, and B_{2} in (4.13) we finally obtain

$$
\begin{align*}
& {\left[\left(l+\frac{N}{2}-\frac{3}{2}\right)\left(\frac{\mathrm{d}}{\mathrm{~d} r}+\frac{l+N-2}{r}\right)-\frac{1}{2}\right] R_{n l}^{(N)}(r)} \\
& \quad=\frac{1}{2} \sqrt{1-\left(\frac{l+(N-3) / 2}{n+(N-3) / 2}\right)^{2}} R_{n, l-1}^{(N)}(r) \tag{4.15}
\end{align*}
$$

In the same way we find

- $n_{1}=-1, l_{1}=-1$:

$$
\begin{align*}
{[(2 l+N-3} & \left.+r)\left(\frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{1}{2}\right)+\frac{(2 l+N-3)(l+N-2)}{r}-(n-1)\right] \\
& \times R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right]=\sqrt{(n+l+N-3)(n+l+N-4)} \\
& \times\left(\frac{n+(N-5) / 2}{n+(N-3) / 2}\right)^{2} R_{n-1, l-1}^{(N)}\left[\left(n+\frac{N-5}{2}\right) r\right] . \tag{4.16}
\end{align*}
$$

- $n_{1}=1, l_{1}=1$:

$$
\begin{align*}
{[(2 l+N-1} & \left.+r)\left(\frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{l}{r}-\frac{1}{2}\right)+(n+l+N-2)\right] R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right] \\
= & -\sqrt{(n+l+N-1)(n+l+N-2)}\left(\frac{n+(N-1) / 2}{n+(N-3) / 2}\right)^{2} \\
& \times R_{n+1, l+1}^{(N)}\left[\left(n+\frac{N-1}{2}\right) r\right] . \tag{4.17}
\end{align*}
$$

- $n_{1}=-1, l_{1}=1$:

$$
\begin{align*}
& {\left[(r-(2 l+N-1))\left(\frac{\mathrm{d}}{\mathrm{~d} r}-\frac{l}{r}+\frac{1}{2}\right)-(n-l-1)\right] R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right]} \\
& \quad=\sqrt{(n-l-1)(n-l-2)}\left(\frac{n+(N-5) / 2}{n+(N-3) / 2}\right)^{2} R_{n-1, l+1}^{(N)}\left[\left(n+\frac{N-5}{2}\right) r\right] . \tag{4.18}
\end{align*}
$$

- $n_{1}=1, l_{1}=-1$:

$$
\begin{align*}
& {\left[(2 l+N-3-r)\left(\frac{\mathrm{d}}{\mathrm{~d} r}+\frac{l+N-2}{r}-\frac{1}{2}\right)-(n-l)\right] R_{n l}^{(N)}\left[\left(n+\frac{N-3}{2}\right) r\right] } \\
&=\sqrt{(n-l)(n-l-1)}\left(\frac{n+(N-1) / 2}{n+(N-3) / 2}\right)^{2} R_{n+1, l-1}^{(N)}\left[\left(n+\frac{N-1}{2}\right) r\right] \tag{4.19}
\end{align*}
$$

- $n_{1}=-1, l_{1}=0$:

$$
\begin{align*}
& {\left[r\left(\frac{\mathrm{~d}}{\mathrm{~d} r}+\frac{1}{2\left(n+\frac{N-3}{2}\right)}\right)-(n-1)\right] R_{n l}^{(N)}(r) } \\
&=-\sqrt{(n-l-1)(n+l+N-3)}\left(\frac{n+(N-5) / 2}{n+(N-3) / 2}\right)^{2} \\
& \times R_{n-1, l}^{(N)}\left[\left(\frac{n+(N-5) / 2}{n+(N-3) / 2}\right) r\right] \tag{4.20}
\end{align*}
$$

- $n_{1}=1, l_{1}=0$:

$$
\begin{align*}
& {\left[r\left(\frac{\mathrm{~d}}{\mathrm{~d} r}-\frac{1}{2(n+(N-3) / 2)}\right)+(n+N-2)\right] R_{n l}^{(N)}(r)} \\
& \quad=\sqrt{(n-l)(n+l+N-2)}\left(\frac{n+(N-1) / 2}{n+(N-3) / 2}\right)^{2} R_{n+1, l}^{(N)}\left[\left(\frac{n+(N-1) / 2}{n+(N-3) / 2}\right) r\right] \tag{4.21}
\end{align*}
$$

Finally, let us point out that, as we already mentioned in the introduction, some of the above relations have also been obtained in other papers, e.g., the expressions (4.15), (4.14), (4.20) and (4.21) correspond to the formulae (31), (32), (34) and (33) of [6, p 4767], respectively; our relation (4.14) corresponds to (4.8) in [14, p 1070], and generalize equations (40) of [21, p 182] and equation (1) of [22, p 472]; relation (4.15) is equivalent to (4.9) in [14, p 1070], and generalize equation (43) of [21, p 182] and equation (2) of [22, p 472]; equations (4.20) and (4.21) are equivalent to equation (8) of [18, p 4260]; the relations (3.16-3.19) of [25, p 89] are particular cases of the relations (4.15), (4.14), (4.21), (4.20), respectively.

5. Concluding remarks

In this paper we present a very simple and constructive approach for finding recurrence relations for the radial wavefunctions of two very important systems: the isotropic harmonic oscillator and the non-relativistic hydrogen atom in N dimensions. Some of the relations were discovered by different methods (sometimes using very cumbersome calculations) and play a fundamental role in several theories, e.g., the ladder relations are closly related to the factorization method of Infeld and Hull for Sturm-Liouville problems, and some of them can be used for numerical
computations of these functions. Furthermore, the method presented here is also valid for other quantum systems such as, for instance, the Morse problem [21] and the relativistic hydrogen atom [25], since the corresponding wavefunctions are proportional to the Laguerre polynomials. Obviously, this method for finding recurrence relations can be extended to any quantum system whose (radial) wavefunction is proportional to hypergeometric-type functions (see, e.g., [5]).

Acknowledgments

The authors thank N M Atakishiyev, J S Dehesa, A Macedo, R J Yánez and A Zarzo for interesting discussions and remarks that allowed us to improve this paper substantially. The second author wants to thank the Departamento de Matemática of the Universidade de Trás-os-Montes e Alto Douro (Portugal) for his kind invitation, where part of this research has been carried out. The work has been partially supported by the Ministerio de Ciencias y Tecnología of Spain under the grant BFM-2000-0206-C04-02, the Junta de Andalucía under grant FQM-262 and the European project INTAS-2000-272.

References

[1] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (New York: Dover)
[2] Alves N A and Drigo Filho E 1988 The factorisation method and supersymmetry J. Phys. A: Math. Gen. 21 3215-25
[3] Atakishiyev N M 1983 Construction of the dynamical symmetry group of the relativistic harmonic oscillator by the Infeld-Hull factorization method Group Theoretical Methods in Physics (Lecture Notes in Physics vol 180) ed M Serdaroglu and E Inonu (Berlin: Springer) pp 393-6
Atakishiyev N M 1984 Theor. Math. Phys. 56 563-72
[4] Avery J 1988 Hyperspherical Harmonics: Applications in Quantum Theory (Dordrecht: Kluwer)
[5] Bagrov V G and Gitman D M 1990 Exact Solutions of Relativistic Wave Equations (Dordrecht: Kluwer)
[6] Bera P K, Bhattacharyya S, Das U and Talukdar B 1993 Recurrence relations for N-dimensional radial wavefunctions Phys. Rev. A 48 4764-7
[7] Cardoso J L 1994 Relações de Recorrência para Funçc̃es do Tipo Hipergeométrico e Aplicações MecânicoQuânticas Master Thesis Universidade de Coimbra, Coimbra
[8] Chihara T 1978 An Introduction to Orthogonal Polynomials (New York: Gordon and Breach)
[9] Dehesa J S and Yañez R J 1994 Fundamental recurrence relations of functions of hypergeometric type and their derivatives of any order Nuovo Cimento B 109 711-23
[10] Dehesa J S, Yañez R J, Pérez-Victoria M and Sarza A 1994 Nonlinear characterizations for functions of hypergeometric type and their derivatives of any order J. Math. Anal. Appl. 184 35-43
[11] Dehesa J S, Yañez R J, Zarzo A and Aguilar J A 1994 New linear relationships of hypergeometric-type functions with applications to orthogonal polynomials Rend. Mat. Roma 13 661-71
[12] Infeld L and Hull T E 1951 The factorization method Rev. Mod. Phys. 23 21-68
[13] Lorente M 2001 Raising and lowering operators, factorization method and differential/difference operators of hypergeometric type J. Phys. A: Math. Gen. 34 569-88
[14] Martin Nieto M 1979 Hydrogen atom and relativistic pi-mesic atom in N-space dimensions Am. J. Phys. 47 1067-72
[15] Martínez-Finkelshtein A and Zarzo A 1995 Varing orthogonality for a class of hypergeometric type polynomials Proc. 2nd Int. Seminar on Approximation and Optimization (Approximation and Optimization Series) ed J Guddat et al (Berlin: Lang)
[16] Martinez A, Zarzo A and Yañez R 1994 Two approaches to the asymptotics of the zeros of a class of polynomials of hypergeometric type Mat. Sb. 185 65-78 (in Russian) (Engl. transl. Russ. Acad. Sci. Sb. Math. 831995 483-94)
[17] Morales J, Arreaga G, Peña J J and López-Bonilla J 1992 Alternative approach to the factorization method Int. J. Quantum Chem., Quantum Chem. Symp. 26 171-9
[18] Morales J, Peña J J and López-Bonilla J 1992 Algebraic approach to matrix elements: recurrence relations and closed formulae for hydrogen-like wavefunctions Phys. Rev. 45 4256-66
[19] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable (Springer Series in Computational Physics) (Berlin: Springer)
[20] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basle: Birkhauser)
[21] Núñez-Yépez H N, López-Bonilla J L, Navarrete D and Salas-Brito A L 1997 Oscillators in one and two dimensions and ladder operators for the Morse and Coulomb problems Int. J. Quantum Chem. 62 177-83
[22] Prunele E de 1983 Three-term recurrence relations for hydrogen wavefunctions: exact calculations and semiclassical approximations J. Math. Phys. 25 472-80
[23] Sánchez M L, Moreno B and López Piñeiro A 1992 Matrix-element calculations for hydrogenlike atoms Phys. Rev. A 46 6908-13
[24] Smirnov Yu F 1999 Factorization method: new aspects Rev. Mex. Fis. 45 1-6
[25] Swainson R A and Drake G W F 1991 A unified treatment of the non-relativistic and relativistic atom: I. The wavefunctions J. Phys. A: Math. Gen. 24 79-94
[26] Szego G 1975 Orthogonal Polynomials (Am. Math. Soc. Coll. Pub. vol 23) (Providence, RI: American Mathematical Society)
[27] Yañez R J, Dehesa J S and Nikiforov A F 1994 The three-term recurrence relations and the differentiation formulae for functions of hypergeometric type J. Math. Anal. Appl. 185 855-66
[28] Yañez R J, Dehesa J S and Zarzo A 1994 Four term recurrence relations of hypergeometric-type polynomials Nuovo Cimento B 109 725-33
[29] Zarzo A 1995 Ecuaciones Diferenciales de Tipo Hipergemétrico Thesis Doctoral Universidad de Granada

